Translate

Thursday, May 13, 2021

S&P/ Case-Shiller U.S. City Price Index as of 02-2021

 


































library(ggplot2)
library(Quandl)
library(zoo)
library(quantmod)
library(TTR)
library(forecast)
library(ggfortify)
library(psych)
library(pastecs)
library(xts)

start <- as.Date("1990-01-01")

getSymbols(c(
  
  'NYXRSA',
  'BOXRSA',
  'SDXRSA',
  'CHXRSA',
  'DNXRSA',
  'LVXRSA',
  'DAXRSA',
  'WDXRSA',
  'MIXRSA',
  'ATXRSA',
  'SFXRSA',
  'LXXRSA',
  'SEXRSA',
  'CSUSHPISA'
  
), from=start, src='FRED')

names(NYXRSA)<-"New York"
names(BOXRSA)<-"Boston"
names(SDXRSA)<-"San Diego"
names(CHXRSA)<-"Chicago"
names(DNXRSA)<-"Denver"
names(LVXRSA)<-"Las Vegas"
names(WDXRSA)<-"DC"
names(MIXRSA)<-"Miami"
names(DAXRSA)<-"Dallas"
names(ATXRSA)<-"Atlanta"
names(SFXRSA)<-"San Francisco"
names(LXXRSA)<-"Los Angeles"
names(SEXRSA)<-"Seattle"
names(CSUSHPISA)<-"National" 

Mortgage<-getSymbols('MORTGAGE30US', src='FRED')

Housing_Price=ATXRSA

Compare_Max=Housing_Price/max(Housing_Price)*100

Diff_Housing=Delt(Housing_Price,k=12)*100
Annual_Changes=annualReturn(Housing_Price)*100

par(mfrow=c(2,1))
plot(Diff_Housing)
plot(Annual_Changes)

summary(last(Annual_Changes,'7 years'))

describe(Annual_Changes)

par(mfrow=c(3,1))
plot(ATXRSA, main="ATLANTA")
plot(Delt(ATXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(ATXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


par(mfrow=c(3,1))
plot(BOXRSA, main="BOSTON")
plot(Delt(BOXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(BOXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


par(mfrow=c(3,1))
plot(CHXRSA, main="CHICAGO")
plot(Delt(CHXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(CHXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


par(mfrow=c(3,1))
plot(DAXRSA, main="DALLAS")
plot(Delt(DAXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(DAXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


par(mfrow=c(3,1))
plot(DNXRSA, main="DENVER")
plot(Delt(DNXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(DNXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)



par(mfrow=c(3,1))
plot(LVXRSA, main="LAS VEGAS")
plot(Delt(LVXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(LVXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


par(mfrow=c(3,1))
plot(MIXRSA, main="MIAMI")
plot(Delt(MIXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(MIXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


par(mfrow=c(3,1))
plot(NYXRSA, main="NEW YORK")
plot(Delt(NYXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(NYXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


par(mfrow=c(3,1))
plot(SDXRSA, main="SAN DIEGO")
plot(Delt(SDXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(SDXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


par(mfrow=c(3,1))
plot(SEXRSA, main="SEATTLE")
plot(Delt(SEXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(SEXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


par(mfrow=c(3,1))
plot(SFXRSA, main="SAN FRANSICO")
plot(Delt(SFXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(SFXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


par(mfrow=c(3,1))
plot(WDXRSA, main="WASHINGTON DC")
plot(Delt(WDXRSA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(WDXRSA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)



par(mfrow=c(3,1))
plot(CSUSHPISA, main="US NATIONAL")
plot(Delt(CSUSHPISA,  k=12)*100, main="Percent changes from previous year ", col="red")
barplot(annualReturn(CSUSHPISA), main="Annual Changes ", col="blue", cex.names=0.8, las=2)


dev.off()

barplot(Annual_Changes, main=" Annual Changes ", col="blue", cex.names=0.8, las=2)





Monthly_Price<-monthlyReturn(Housing_Price)
Monthly_Rate<-MORTGAGE30US

Housing<-na.omit(merge(Monthly_Price,MORTGAGE30US))
head(Housing)

# Scatter chart for Price chagnes

scatter.smooth(last(Housing, "10 years"))
abline(lm(Housing$monthly.returns~Housing$MORTGAGE30US), col="blue")

# Regressiion Model

alli.mod1=lm(Combined$monthly.returns~Combined$MORTGAGE30US, data=Combined)

summary(alli.mod1)


autoplot(MORTGAGE30US)
y<-(Housing_Price)

library(ggfortify)
library(forecast)
autoplot(y)

d.arima<-auto.arima(y)
d.arima

d.forecast<-forecast(d.arima)
d.forecast

autoplot(forecast(d.arima, 36))


fit<-ets(y)
autoplot(stl(y, plot=FALSE))
ggtsdiag(auto.arima(y))


autoplot(forecast(fit,36))



Housing_Prices <- as.xts(data.frame(
  
  NYXRSA,
  BOXRSA,
  SDXRSA,
  CHXRSA,
  DNXRSA,
  LVXRSA,
  WDXRSA,
  MIXRSA,
  LXXRSA,
  SFXRSA
))



Housing_return = apply(Housing_Prices, 1, function(x) {x / Housing_Prices[1,]}) %>% 
  t %>% as.xts


head(Housing_return)

Summary_Stat<-summary(Housing_return)

cor(Housing_return)

write.table(Summary_Stat, "Summary.xls")

plot(as.zoo(Housing_return), screens = 1, lty = 1:10, xlab = "Date", ylab = "Home Price Index")
legend("topleft", c("New York", "Boston", "San Diego","Chicago",
                    "Denver", "Las Vegas","DC",
                    "Miami", "Los Angeles", "San Francisco"), lty = 1:10, cex = 0.5)


plot(Housing_return,  xlab = "Date", ylab = "Index (1987=100)")
legend("right", c("New York", "Boston", "San Diego","Chicago",
                    "Denver", "Las Vegas","DC",
                    "Miami","Los Angeles","San Francisco"), 
       fill=c("blue","red","green","black","sky blue","purple","yellow",
              "white", "black","red"
                                                                   
                    ) )


ggplot(Housing_return, aes( x=))

tail(Housing_return)





No comments:

Post a Comment