My objective is to simplify and clarify economics, making it accessible to everyone. It is important to remember that the opinions expressed in my writing are solely my own and should not be considered as financial advice. Any potential losses incurred from acting upon the information provided in my writing are the responsibility of the individual, and I cannot be held liable for them.
Translate
Tuesday, February 21, 2023
Allocation of Investments by Country as of 02/2023
library(quantmod)
library(PortfolioAnalytics)
# Define the portfolio symbols
symbols <- c(
"EWJ", #iShares Japan
"EWG", #iShares Germany
"EWU", #iShares UK
"EWC", #iShares Canada
"EWY", #iShares South Korea
"EWA", #iShares Australia
"EWH", #iShares Hong Kong
"EWS", #iShares Singapore
"EWT", #iShares Taiwan
"EWZ", #iShares Brazil
"EFA", #iShares EAFE
"ERUS", #iShares Russia
"EZA", #iShares South Africa
"EPP", #iShares Pacific Ex Japan
"FXI" ,#iShare China Large-Cap
"SPY" #US
)
# Fetch the closing prices
#prices <- data.frame(lapply(symbols, function(sym) Ad(getSymbols(sym, auto.assign = FALSE))))
prices <- data.frame(Date = as.Date("1970-01-01"))
for (sym in symbols) {
sym_data <- data.frame(Date = index(getSymbols(sym, auto.assign = FALSE)),
Ad(getSymbols(sym, auto.assign = FALSE)))
colnames(sym_data)[-1] <- sym
prices <- merge(prices, sym_data, by = "Date", all = TRUE)
}
# Define the portfolio
portfolio <- portfolio.spec(assets = symbols)
# Add constraints
portfolio <- add.constraint(portfolio, type = "weight_sum", min_sum = 0.95, max_sum = 1.05)
portfolio <- add.constraint(portfolio, type = "box", min = 0.01, max = 0.5)
# Define the optimization objective
portfolio <- add.objective(portfolio, type = "risk", name = "var", arguments = list(p = 0.95))
library(xts)
# Set the date column as row names
rownames(prices) <- prices$Date
prices$Date <- NULL
# Convert to a time series object
prices_xts <- xts(prices, order.by = as.Date(rownames(prices)))
names(prices_xts) <-c("Japan","Germany","UK","Canada","South Korea","Australia","Hong Kong",
"Singapore","Taiwan","Brazil","EAFE","Russia","South Africa","Pacific Ex Japan",
"China","U.S.")
tail(prices_xts)
# Run the portfolio optimization
opt_portfolio <- optimize.portfolio(prices_xts, portfolio)
# Optimize the portfolio
#opt_portfolio <- optimize.portfolio(prices, portfolio)
# Display the optimized weights
print(opt_portfolio$weights)
opt_portfolio
#Create a vector of values for the pie chart
values <- c(opt_portfolio$weights)
#Create a vector of labels for the pie chart
labels <- c("Japan", "Germany", "UK", "Canada", "South Korea", "Australia", "Hong Kong", "Singapore", "Taiwan", "Brazil", "EAFE", "Russia", "South Africa", "Pacific Ex Japan", "China", "U.S.")
#Create the pie chart
pie(values, labels = labels)
#Add a title to the pie chart
title("Allocation of Investments by Country")
percent <- paste0(round(values * 100, 1), "%")
legend("topleft", legend = paste(labels, percent, sep = " - "), cex = 0.8, fill = rainbow(length(values)))
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment