Translate

Friday, April 23, 2021

The housing market in Atlanta-Sandy Springs-Roswell, GA as of 03/2021

 




library(quantmod)

library(reshape2)
library(ggplot2)

library(googleVis)


#Importing Housing Data

download.file("https://econdata.s3-us-west-2.amazonaws.com/Reports/Core/RDC_Inventory_Core_Metrics_Metro_History.csv",
              destfile = "Metro_Hist.csv")


Housing_Metro <- read.csv("Metro_Hist.csv")


# Select Housing Prices for top 20 cities

Housing<- subset(Housing_Metro, Housing_Metro$HouseholdRank=='9') 

Housing<-Housing[order(Housing$month_date_yyyymm),]

ratio=Housing$average_listing_price/Housing$median_listing_price

d <- density(ratio)
plot(d, main="Average Prices / Median Prices")
polygon(d, col="red", border="blue")


var0<-Housing$median_listing_price
var1<-Housing$average_listing_price
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57) 

# Creating Charts

ggplot() + geom_line(aes(x=date,y=var0),color='red') +
  
  geom_line(aes(x=date,y=var1),color='blue') + 
  
  
  ylab('Housing Prices')+xlab('Date')+
  
  labs(title=" Median Listing Prices (in Red) and Average Listing Prices (in Blue)")




# Percent Chagnes

var2<-Housing$median_listing_price_yy
var3<-Housing$average_listing_price_yy
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57)  

ggplot() + geom_line(aes(x=date,y=var2),color='red') +
  
  geom_line(aes(x=date,y=var3),color='blue') + 
  
  ylab('Housing Prices')+xlab('Date')+
  
  labs(title=" Median Listing Prices (in Red) and Average Listing Prices Y to Y (in Blue)")



barplot(Housing$active_listing_count_yy, main="Active Listing Counting"
        ,
        names.arg = Housing$Month, cex.names = 0.3 )


barplot(Housing$median_days_on_market_yy, main="Days on Market Y to Y"
        ,
        names.arg = Housing$Month, cex.names = 0.3 )


barplot(Housing$pending_listing_count_yy, main="Pending Listing Count Y to Y"
        ,
        names.arg = Housing$Month, cex.names = 0.5 )



barplot(Housing$new_listing_count_yy, main="New Listing Y to Y"
        ,
        names.arg = Housing$Month, cex.names = 0.5 )


# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=ratio, group=1)) +
  geom_line()+
  geom_point()+
  labs(title=" Ratio ( Average Price / Median Price) ")



# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=active_listing_count, group=1)) +
  geom_line(linetype="dashed")+
  geom_point()+
  labs(title=" Active Listing Count")







The housing market in Chicago-Naperville-Elgin as of 3/2021

 











The Housing Market in Los Angeles-Long beach-Anaheim, CA as of 03/2021

 














library(quantmod)

library(reshape2)
library(ggplot2)

library(googleVis)


#Importing Housing Data

download.file("https://econdata.s3-us-west-2.amazonaws.com/Reports/Core/RDC_Inventory_Core_Metrics_Metro_History.csv",
              destfile = "Metro_Hist.csv")


Housing_Metro <- read.csv("Metro_Hist.csv")


# Select Housing Prices for top 20 cities

Housing<- subset(Housing_Metro, Housing_Metro$HouseholdRank=='2') 

Housing<-Housing[order(Housing$month_date_yyyymm),]

ratio=Housing$average_listing_price/Housing$median_listing_price

d <- density(ratio)
plot(d, main="Average Prices / Median Prices")
polygon(d, col="red", border="blue")


var0<-Housing$median_listing_price
var1<-Housing$average_listing_price
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57) 

# Creating Charts

ggplot() + geom_line(aes(x=date,y=var0),color='red') +
  
  geom_line(aes(x=date,y=var1),color='blue') + 
  
  
  ylab('Housing Prices')+xlab('Date')+
  
  labs(title=" Median Listing Prices (in Red) and Average Listing Prices (in Blue)")




# Percent Chagnes

var2<-Housing$median_listing_price_yy
var3<-Housing$average_listing_price_yy
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57)  

ggplot() + geom_line(aes(x=date,y=var2),color='red') +
  
  geom_line(aes(x=date,y=var3),color='blue') + 
  
  ylab('Housing Prices')+xlab('Date')+
  
  labs(title=" Median Listing Prices (in Red) and Average Listing Prices Y to Y (in Blue)")



barplot(Housing$active_listing_count_yy, main="Active Listing Counting"
        ,
        names.arg = Housing$Month, cex.names = 0.3 )


barplot(Housing$median_days_on_market_yy, main="Days on Market Y to Y"
        ,
        names.arg = Housing$Month, cex.names = 0.3 )


barplot(Housing$pending_listing_count_yy, main="Pending Listing Count Y to Y"
        ,
        names.arg = Housing$Month, cex.names = 0.5 )



barplot(Housing$new_listing_count_yy, main="New Listing Y to Y"
        ,
        names.arg = Housing$Month, cex.names = 0.5 )


# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=ratio, group=1)) +
  geom_line()+
  geom_point()+
  labs(title=" Ratio ( Average Price / Median Price) ")



# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=active_listing_count, group=1)) +
  geom_line(linetype="dashed")+
  geom_point()+
  labs(title=" Active Listing Count")



The housing market in New York - Newwark-Jersey city, NY-NJ-PA as of 03/2021

 





# Select Housing Prices for top 20 cities

Housing<- subset(Housing_Metro, Housing_Metro$HouseholdRank=='1') 

Housing<-Housing[order(Housing$month_date_yyyymm),]

ratio=Housing$average_listing_price/Housing$median_listing_price

d <- density(ratio)
plot(d, main="Average Prices / Median Prices")
polygon(d, col="red", border="blue")


var0<-Housing$median_listing_price
var1<-Housing$average_listing_price
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57) 

# Creating Charts

ggplot() + geom_line(aes(x=date,y=var0),color='red') +
  
  geom_line(aes(x=date,y=var1),color='blue') + 
  
  
  ylab('Housing Prices')+xlab('Date')+
  
  labs(title=" Median Listing Prices (in Red) and Average Listing Prices (in Blue)")




# Percent Chagnes

var2<-Housing$median_listing_price_yy
var3<-Housing$average_listing_price_yy
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57)  

ggplot() + geom_line(aes(x=date,y=var2),color='red') +
  
  geom_line(aes(x=date,y=var3),color='blue') + 
  
  ylab('Housing Prices')+xlab('Date')+
  
  labs(title=" Median Listing Prices (in Red) and Average Listing Prices Y to Y (in Blue)")



barplot(Housing$active_listing_count_yy, main="Active Listing Counting"
        ,
        names.arg = Housing$Month, cex.names = 0.3 )


barplot(Housing$median_days_on_market_yy, main="Days on Market Y to Y"
        ,
        names.arg = Housing$Month, cex.names = 0.3 )


barplot(Housing$pending_listing_count_yy, main="Pending Listing Count Y to Y"
        ,
        names.arg = Housing$Month, cex.names = 0.5 )



barplot(Housing$new_listing_count_yy, main="New Listing Y to Y"
        ,
        names.arg = Housing$Month, cex.names = 0.5 )


# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=ratio, group=1)) +
  geom_line()+
  geom_point()+
  labs(title=" Ratio ( Average Price / Median Price) ")



# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=active_listing_count, group=1)) +
  geom_line(linetype="dashed")+
  geom_point()+
  labs(title=" Active Listing Count")