My objective is to simplify and clarify economics, making it accessible to everyone. It is important to remember that the opinions expressed in my writing are solely my own and should not be considered as financial advice. Any potential losses incurred from acting upon the information provided in my writing are the responsibility of the individual, and I cannot be held liable for them.
Translate
Saturday, April 24, 2021
Friday, April 23, 2021
The housing market in Atlanta-Sandy Springs-Roswell, GA as of 03/2021
library(quantmod)
library(reshape2)
library(ggplot2)
library(googleVis)
#Importing Housing Data
download.file("https://econdata.s3-us-west-2.amazonaws.com/Reports/Core/RDC_Inventory_Core_Metrics_Metro_History.csv",
destfile = "Metro_Hist.csv")
Housing_Metro <- read.csv("Metro_Hist.csv")
# Select Housing Prices for top 20 cities
Housing<- subset(Housing_Metro, Housing_Metro$HouseholdRank=='9')
Housing<-Housing[order(Housing$month_date_yyyymm),]
ratio=Housing$average_listing_price/Housing$median_listing_price
d <- density(ratio)
plot(d, main="Average Prices / Median Prices")
polygon(d, col="red", border="blue")
var0<-Housing$median_listing_price
var1<-Housing$average_listing_price
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57)
# Creating Charts
ggplot() + geom_line(aes(x=date,y=var0),color='red') +
geom_line(aes(x=date,y=var1),color='blue') +
ylab('Housing Prices')+xlab('Date')+
labs(title=" Median Listing Prices (in Red) and Average Listing Prices (in Blue)")
# Percent Chagnes
var2<-Housing$median_listing_price_yy
var3<-Housing$average_listing_price_yy
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57)
ggplot() + geom_line(aes(x=date,y=var2),color='red') +
geom_line(aes(x=date,y=var3),color='blue') +
ylab('Housing Prices')+xlab('Date')+
labs(title=" Median Listing Prices (in Red) and Average Listing Prices Y to Y (in Blue)")
barplot(Housing$active_listing_count_yy, main="Active Listing Counting"
,
names.arg = Housing$Month, cex.names = 0.3 )
barplot(Housing$median_days_on_market_yy, main="Days on Market Y to Y"
,
names.arg = Housing$Month, cex.names = 0.3 )
barplot(Housing$pending_listing_count_yy, main="Pending Listing Count Y to Y"
,
names.arg = Housing$Month, cex.names = 0.5 )
barplot(Housing$new_listing_count_yy, main="New Listing Y to Y"
,
names.arg = Housing$Month, cex.names = 0.5 )
# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=ratio, group=1)) +
geom_line()+
geom_point()+
labs(title=" Ratio ( Average Price / Median Price) ")
# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=active_listing_count, group=1)) +
geom_line(linetype="dashed")+
geom_point()+
labs(title=" Active Listing Count")
The Housing Market in Los Angeles-Long beach-Anaheim, CA as of 03/2021
library(quantmod)
library(reshape2)
library(ggplot2)
library(googleVis)
#Importing Housing Data
download.file("https://econdata.s3-us-west-2.amazonaws.com/Reports/Core/RDC_Inventory_Core_Metrics_Metro_History.csv",
destfile = "Metro_Hist.csv")
Housing_Metro <- read.csv("Metro_Hist.csv")
# Select Housing Prices for top 20 cities
Housing<- subset(Housing_Metro, Housing_Metro$HouseholdRank=='2')
Housing<-Housing[order(Housing$month_date_yyyymm),]
ratio=Housing$average_listing_price/Housing$median_listing_price
d <- density(ratio)
plot(d, main="Average Prices / Median Prices")
polygon(d, col="red", border="blue")
var0<-Housing$median_listing_price
var1<-Housing$average_listing_price
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57)
# Creating Charts
ggplot() + geom_line(aes(x=date,y=var0),color='red') +
geom_line(aes(x=date,y=var1),color='blue') +
ylab('Housing Prices')+xlab('Date')+
labs(title=" Median Listing Prices (in Red) and Average Listing Prices (in Blue)")
# Percent Chagnes
var2<-Housing$median_listing_price_yy
var3<-Housing$average_listing_price_yy
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57)
ggplot() + geom_line(aes(x=date,y=var2),color='red') +
geom_line(aes(x=date,y=var3),color='blue') +
ylab('Housing Prices')+xlab('Date')+
labs(title=" Median Listing Prices (in Red) and Average Listing Prices Y to Y (in Blue)")
barplot(Housing$active_listing_count_yy, main="Active Listing Counting"
,
names.arg = Housing$Month, cex.names = 0.3 )
barplot(Housing$median_days_on_market_yy, main="Days on Market Y to Y"
,
names.arg = Housing$Month, cex.names = 0.3 )
barplot(Housing$pending_listing_count_yy, main="Pending Listing Count Y to Y"
,
names.arg = Housing$Month, cex.names = 0.5 )
barplot(Housing$new_listing_count_yy, main="New Listing Y to Y"
,
names.arg = Housing$Month, cex.names = 0.5 )
# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=ratio, group=1)) +
geom_line()+
geom_point()+
labs(title=" Ratio ( Average Price / Median Price) ")
# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=active_listing_count, group=1)) +
geom_line(linetype="dashed")+
geom_point()+
labs(title=" Active Listing Count")
The housing market in New York - Newwark-Jersey city, NY-NJ-PA as of 03/2021
# Select Housing Prices for top 20 cities
Housing<- subset(Housing_Metro, Housing_Metro$HouseholdRank=='1')
Housing<-Housing[order(Housing$month_date_yyyymm),]
ratio=Housing$average_listing_price/Housing$median_listing_price
d <- density(ratio)
plot(d, main="Average Prices / Median Prices")
polygon(d, col="red", border="blue")
var0<-Housing$median_listing_price
var1<-Housing$average_listing_price
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57)
# Creating Charts
ggplot() + geom_line(aes(x=date,y=var0),color='red') +
geom_line(aes(x=date,y=var1),color='blue') +
ylab('Housing Prices')+xlab('Date')+
labs(title=" Median Listing Prices (in Red) and Average Listing Prices (in Blue)")
# Percent Chagnes
var2<-Housing$median_listing_price_yy
var3<-Housing$average_listing_price_yy
date <- seq(as.Date("2016-07-01"), by="1 month", length.out=57)
ggplot() + geom_line(aes(x=date,y=var2),color='red') +
geom_line(aes(x=date,y=var3),color='blue') +
ylab('Housing Prices')+xlab('Date')+
labs(title=" Median Listing Prices (in Red) and Average Listing Prices Y to Y (in Blue)")
barplot(Housing$active_listing_count_yy, main="Active Listing Counting"
,
names.arg = Housing$Month, cex.names = 0.3 )
barplot(Housing$median_days_on_market_yy, main="Days on Market Y to Y"
,
names.arg = Housing$Month, cex.names = 0.3 )
barplot(Housing$pending_listing_count_yy, main="Pending Listing Count Y to Y"
,
names.arg = Housing$Month, cex.names = 0.5 )
barplot(Housing$new_listing_count_yy, main="New Listing Y to Y"
,
names.arg = Housing$Month, cex.names = 0.5 )
# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=ratio, group=1)) +
geom_line()+
geom_point()+
labs(title=" Ratio ( Average Price / Median Price) ")
# Basic line plot with points
ggplot(data=Housing, aes(x=month_date_yyyymm, y=active_listing_count, group=1)) +
geom_line(linetype="dashed")+
geom_point()+
labs(title=" Active Listing Count")
Thursday, April 22, 2021
Subscribe to:
Posts (Atom)